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We have performed molecular-dynamics simulation to analyze structural phase transitions in a two-
dimensional system using a model which has been proposed to study pressure-induced martensitic transfor-
mation in iron. At low temperatures, the square↔hexagonal phase transition was observed at P�=5.4�1� and
the reverse transition occurred only by application of tension on the system. At a temperature near the melting
point, the hexagonal phase was reached at P�=3.1�1� and it went back to square symmetry at P�=1.9�1�
showing hysteresis. The activation energy for this transition was evaluated using the nudged elastic band
method. Our work permitted to detail the mechanism of square↔hexagonal transformations, contributing for
a better understanding about the dynamics of self-organization phenomenon.
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I. INTRODUCTION

The study of pressure-induced phase transitions has re-
ceived much attention in these days. The development of
computational tools has supported theoreticians to better un-
derstand the mechanisms involved in structural phase transi-
tions. Special interest has been devoted to the studies of the
high pressure effect in the mantle core of the Earth. For
example, recent experiments and theoretical calculation pro-
posed that iron present in the Earth’s core is stable in a body-
centered-cubic �bcc� phase.1–5 In order to elucidate the
atomic pathway of the iron under pressure, Lee et al.6 used
molecular dynamics �MD� to determine how the particles
move relatively to one another during its pressure-induced
structural transitions. Lee managed to confirm the model pro-
posed by Mao et al.7 that explains that, by increasing pres-
sure, the bcc structure transforms to the hcp structure by
contraction along the �001� direction combined with sliding

along the �1̄10� and �11̄0� directions for alternate �110�
planes. Besides these hard-core three-dimensional �3D� sys-
tems, soft matter, such as colloidal inclusion in thin films, is
a typical example of two-dimensional �2D� system. Recently,
the fabrication of structures by self-assembly method permit-
ted scientists to obtain several symmetric and ordered
conformations.8–12 The spontaneous formations of hexagonal
and square arrays have been extremely dependent on experi-
mental conditions such as nanoparticle shape and size, array
symmetry, particle concentration, and deposition methods on
substrate.13–18 Theoretical calculations19–21 have been made
in the past few years aiming to explain these formations. On
several nanoparticle systems, the square→hexagonal phase
transformation occurs by the increase in colloidal
concentration.18,22,23 In some oil-drop experiments, this can
be achieved by increasing the vibrational frequency of
bounce24 while in 2D electronical crystals, with layered
structures, it occurs by changing the interlayer distance.25

In this work, we study a pressure-induced structural phase
transition in a two-dimensional system. A modified interac-
tion potential, which has the same functional form of the

potential proposed by Lee et al.,6 was used to study the struc-
tural phase transformation in a 2D system. This interaction
potential is very rich since it reveals a vast phase diagram as
it has been reported by Engel et al.26 The 2D crystal, initially
in a square structure, undergoes a transition to a hexagonal
structure once we apply sufficient pressure onto the system.
To this end, we use classical molecular dynamics in the
isobaric-isoenthalpic ensemble27 which permits us to observe
structural changes in the material being simulated. Further
discussion on the potential will be given on Sec. II. On our
investigations, we made a preliminary analysis about the
crystallization behavior of the system. We then studied the
microscopic motion of the particles during the pressure-
induced transition. The reverse transformation shows hyster-
esis and occurs at a certain range of temperature. At low
temperatures, reversibility could be attained by applying
negative pressure, as it was observed in the tridimensional
system.6 We also obtained the minimum energy path for the
square→hexagonal transition using the nudged elastic band
�NEB� method28 in order to clarify the kinetic aspect of this
transformation. Analogous structure transitions have been
observed on several systems, particularly those involving
self-assembled particles on substrate.8,10,22,24,25 On these sys-
tems, transformations can be obtained by changing experi-
mental conditions such as density, pressure, temperature, and
others.

The paper is organized as follows. In Sec. II we describe
the system and the molecular-dynamics procedure. In Sec. III
we discuss the computer experiments and our results. In Sec.
IV we finally conclude.

II. MODEL AND SIMULATION PROCEDURE

Based on the interaction potential proposed by Lee et al.,6

we consider the modified Lennard-Jones potential in order to
favor a square lattice in a 2D system. This choice is neces-
sary to make a less compact system to be more stable at zero
pressure, permitting us to observe possible phase transitions
when pressure is applied. Indeed, a square lattice can never
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be stable for potentials with the form V�r�=A /rn+B /rm �Ref.
29�. Other potentials, however, could be used for this
purpose.30,31

The expression for the modified Lennard-Jones potential
is

VMLJ�r� = − 4����

r
�6

− ��

r
�12� − Ge−�r − r0/��2

. �1�

The first term is the standard Lennard-Jones potential. The
second term is introduced to make the square lattice more
stable at zero pressure. G is the intensity of this interaction, �
is the width of the Gaussian function, and r0 is the second
neighbor distance. We then performed MD calculations in a
2D system containing 400 particles using the �N , P ,H�
ensemble27 �number of particles, pressure, and enthalpy are
constants during simulation�. In this ensemble, the simula-
tion box can change both size and shape, which makes it a
useful tool to analyze structural changes throughout the
simulation.

We solve the equations of motion using Gear’s fifth-order
predictor-corrector algorithm.32 Energy is in units of � and
length is in units of � �Ref. 33�. The potential was shifted at
the cutoff rcut=4.5 so the potential function and its derivative
go smoothly to zero at rcut �Ref. 34�. In this work, G=1.0,
�=0.2, r0=1.6, and a time step �t�=1.0�10−2. All physical
quantities are in reduced units and are indicated by an aster-
isk.

The lattice energy for each structure as a function of the
reduced volume and the Murnaghan equation of state curve
fit are shown in Fig. 1. The Murnaghan equation is defined
as35

E�V� = E0 +
B0V

B0�
� �V0/V�B0�

B0� − 1
+ 1� −

B0V0

B0� − 1
, �2�

where B0 and B0� are the zero-pressure bulk modulus and its
pressure derivative; V0 and E0 are the volume and energy of
the relaxed state.

III. RESULTS AND DISCUSSION

A. Melting and crystallization

The system was setup initially at fixed P�=1 with density
��=0.8 and at temperature T�=10−3 in a square structure. We
then increased the temperature at the rate of 0.03 each 2
�104 time steps. By investigating the system density as a
function of temperature we could find the approximate melt-
ing point at T�=0.59. The liquid system was then cooled at
the same rate. As a result, the melt crystallized in the square
structure with little formation of defects, as shown in Fig.
2�a�. All snapshots were generated using the ATOMEYE ato-
mistic configuration viewer of Li.36

Next, we heated the initial crystal at the rate of 0.05 each
2�104 time steps at fixed pressure P�=4. When the system
reached T�=0.05, it was found to be in a hexagonal structure
due to the pressure applied �details in the following subsec-
tions�. The system melted at T�=0.95 at this pressure and
showed crystallization to the hexagonal structure when
cooled at the same rate �Fig. 2�b�� again with little formation
of defects.

B. Structural transitions at low temperatures

Our preliminary goal was to identify at which pressure the
initial square lattice transforms to a hexagonal one at low
temperatures. We set the temperature of the system at T�

=10−3 and we applied pressure at a rate of 0.1 pressure units
each 2�104 time steps. The structural phase transition was
observed at P�=5.4�1�. This is a first-order phase transition
and was clearly identified by a jump of the system density.

We were not able to find the reverse transition for this
system at low temperatures, even at zero pressure and with
large period of thermalization. Reversibility could only be
achieved when tension outward the system, i.e., negative
pressure, was applied. In other words, the system could self-
assemble into a square symmetry when we allowed a larger
area for the particles to move in. This process is described in
Fig. 3. This reverse transition has an analogous phenomenon
occurring in the 3D system studied by Lee et al.6 at low
temperatures using the same form of potential.

The impossibility to achieve the hexagonal→square tran-
sition at low temperatures is due to the lack of kinetic energy
necessary for the system to jump between the hexagonal and
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FIG. 1. �Color online� Cohesive energy per particle for square
and hexagonal structures as a function of the reduced volume. Lines
represent the curve fitting of the Murnaghan equation. The param-
eters for the square/hexagonal lattice are B0=0.138�3� /0.147�2�,
B0�=6.83�6� /12.96�15�, V0=494.3�8� /398.9�4�, and E0=−4.40�2� /
−3.67�1�.

(b)(a)

FIG. 2. �Color online� Snapshots of the system after crystalliza-
tion: �a� P�=1; �b� P�=4. In both cases, almost no defect was
formed. Colors indicate the coordination number of each particle
�green=3, grey=4, red=5, and black=6�.
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the square cohesive energy wells for system volumes below
600 �see Fig. 1�.

C. Structural transitions near the melting point

Differently from the low temperature case, for systems
with high temperatures, e.g., near the melting point, the re-
verse transition would be feasible. The square lattice was
then heated at fixed zero pressure until melting occurred at

T�=0.43�1�. We set the temperature of the system at T�

=0.4 �93% of the estimated melting temperature37� and per-
formed the same procedure done at a low temperature. This
time, the system went from square to hexagonal symmetry at
P�=2.8�1�. A short pretransformation stage was identified
when the pressure reached P�=2.6 as shown in Fig. 4�a�. In
this stage, the system is no longer a perfect square lattice and
shows sliding between two square domains �stacking fault
line�. From this point, if we reduce the pressure the system

(b)(a) (c)

FIG. 3. �Color online� Snapshots of the system during the hexagonal→square transition induced by negative pressure. In �a�, small
defects arise from the initially perfect hexagonal structure at P�=−1.71�1�. The system evolves into a rarified state �b� when equilibrium is
reached. Finally in �c� tension is removed: the system exhibits formation of domains in the square structure. Colors as in Fig. 2.

(b)(a) (c)

(d)

FIG. 4. �Color online� Snapshots of the system during the square→hexagonal transition induced by pressure near the melting point. �a�
The system exhibits sliding between two square domains at P�=2.6. �b� At time step 4000 and P�=2.8. The system starts to form a
hexagonal “cross” inside the square lattice. �c� At time step 10 000 and P�=2.8. From this picture, it is clear the coexistence of two distinct
phases and that there was no amorphization during the transition. �d� At time step 16 000 and P�=2.8, the system becomes a perfect
hexagonal crystal. Colors as in Fig. 2.
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returns to a perfect square lattice. At low temperatures, the
pretransformation stage was not identified in the square
→hexagonal transition, which differs from the three-
dimensional case.6 Moreover, Fig. 4 shows how the particles
rearrange during the square→hexagonal transition. In this
transition, there is the coexistence of both square and hex-
agonal structure before the system finally crystallizes into a
perfect hexagonal symmetry.

The system went back to square symmetry at P�=1.6�1�
showing hysteresis during the transformation. The coordina-
tion number during decrease in pressure �Fig. 5� shows that
the system passes from a hexagonal structure �coordination
number equal 6� to a square structure �equal 4�. In this re-
verse transformation, showed in Fig. 6, we first observe
some defect formation with no apparent crystallization. As
the system evolves, it slowly changes to an amorphous state
before finally having a square symmetry with the formation
of two domains.

The hexagonal→square transition differs from the
square→hexagonal transition in some aspects. The reverse
transition takes a longer time to complete than the square
→hexagonal one. Also, we observed amorphization only
during the reverse transition. These two aspects are probably
related since a high atomic mobility and a larger area for the
atoms to move are required for the reverse transition to be
possible. The high mobility of the particles can lead to an
amorphization. Thus, a longer time would be necessary for
the particles to rearrange themselves into a new stable struc-
ture.

Those transitions are uniquely dependent on the thermo-
dynamic state of the system. In other words, if we keep the
pressure fixed and increase the temperature, the square
→hexagonal transformation occurs, as is exemplified in Fig.
7. However, the reverse transformation could not be
achieved since a high mobility of the atoms is necessary for
such transition.
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FIG. 5. �Color online� Pair coordination function for three val-
ues of pressure during the reverse transformation at T�=0.4. �Inset�
Reduced density as a function of P�. Open squares indicate increase
in pressure. Filled squares indicate the reverse process.

(b)(a) (c)

(d)

FIG. 6. �Color online� Snapshots of the system during the hexagonal→square transition induced by decrease in pressure near the melting
point. �a� At time step 9000 and P�=1.6. The system exhibits some formation of defects in the hexagonal lattice. �b� At time step 21 000 and
P�=1.6. The system becomes temporarily amorphous due to the high mobility of the atoms. �c� At time step 36 000 and P�=1.6. �d� At time
step 42 000 and P�=1.6, we have the formation of two domains in a square symmetry. Colors as in Fig. 2.
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D. Transitional energy barrier and phase diagram

The evaluation of the activation energy barrier for a
square→hexagonal transition was made using the NEB
method.28 This is an efficient tool for finding the minimum
energy path �MEP�, given the knowledge of both the initial
and final states. We used screenshots in the MD run during
the transition at T�=0.05 as the initial set of configurations
�images�. The algorithm converged after 90 000 iterations for
a set of 13 images. We were then able to plot the enthalpy
difference �H�=Himage

� −Hsquare
� as a function of the reaction

coordinate SM defined as38

SM = 	
m=1

M 
	
i=1

N

�ri,m − ri,m−1�2/N , �3�

where N is the number of particles, M is the number of
images, and r is the atomic coordinate in the configuration
phase space. The activation energy found in the MEP �Fig. 8�
is equal to 0.11. We also calculated the MEP using screen-
shots of the transition at T�=0.30 as the initial set of images.
The MEP for this case yielded the same result for the acti-
vation energy, as expected from transition kinetics theory
�see Ref. 39, for example�.

Another notable property of the system is the minimum
temperature necessary for the occurrence of hysteresis. We
started with the system in a hexagonal structure at T�=0.01,
i.e., the low temperature regime, and P�=6.0. We then de-
creased the pressure until P�=0. The system remained in a
hexagonal structure as expected. Later, while keeping zero
pressure, we heated the system until it passed from the hex-
agonal to the square symmetry at T�=0.14, as can be ob-
served in Fig. 9. The transition temperature here reported can
be regarded as a lower limit for the occurrence of hysteresis
in this type of pressure-induced phase transition.40

Additionally, we performed some simulations to construct
a P�T phase diagram �Fig. 10� in order to clarify the equi-
librium phases of a given thermodynamic state. To create the
square-hexagonal coexistence curve, we identified at which
pressure the system went from a square structure to a hex-
agonal one on each temperature. At temperatures above 0.45,
a hybrid phase was found in which both square and hexago-
nal domains coexisted even for long periods of thermaliza-
tion. We believe this behavior is due to the formation of
defects in the square lattice at high temperatures. We were
able to construct the phase diagram up to T�=0.58. At higher
temperatures, data were not reproducible due to the difficulty
to simulate the liquid state in the �N , P ,H� ensemble.
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FIG. 7. �Color online� Pair distribution function for two states
during temperature-induced phase transition at fixed P�=4. �Inset�
Atomic volume as a function of T�. Arrows indicate the sense of the
transition.
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FIG. 8. The minimum energy path for the square→hexagonal
transition. Points are connected via cubic spline interpolation.
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FIG. 9. �Color online� Pair coordination function for two states
during increasing temperature phase transition at fixed P�=0. �In-
set� Reduced density as a function of T�. The density drop indicates
the minimum temperature for the hexagonal→square transition.
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IV. CONCLUSIONS

In this work, we have studied in detail the mechanisms of
pressure-induced phase transitions using MD techniques.
The particles in the 2D system interacted via a modified
Lennard-Jones potential. We examined the conditions at
which a structural transition was possible for different tem-
peratures and pressures applied.

The crystallization behavior of the system showed a
strong dependence with the pressure applied. For low values
of P�, the melted system crystallizes in the square structure
and for higher values, it rearranges into the hexagonal struc-
ture.

In regard to the main focus of the paper, we observed two
distinct behaviors for pressure-induced phase transitions. At
low temperatures, we concluded that the square
→hexagonal transition is irreversible unless we apply a
negative pressure onto the system. For temperatures above

T�=0.14, the transition is reversible and shows hysteresis.
The dynamics observed in these transitions are similar to

those occurred in several systems, particularly those involv-
ing self-assembled particles on substrate. As an example, in
systems of inclusions over liquid crystals, the application of
lateral pressure causes the system to self-organize into a
more compact structure41 �long chains→square
→hexagonal�. Like our systems, increase in temperature and
density has the same effect of producing such transitions.
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