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E
ntropic forces are effective forces that
result from a system's statistical ten-
dency to increase its entropy. They

differ from traditional, conservative ones
like van der Waals or Coulomb forces that
arise from underlying microscopic interac-
tions. Polymer “elasticity”,1 hydrophobicity,2

and depletion interactions3 are all examples
of entropic forces. Entropy can also cause
hard particles, which have no interactions
other than their inability to occupy the same
region in space, to form crystals and liquid
crystals. Hard rods and disks spontaneously
align and can order into layers and columns
at intermediate packing densities if those
structures increase the configurational space
available to the particles.4,5 Hard spheres
crystallize into a face-centered cubic (fcc)
structure for the same reason.6 Recently, the
first hard-particle quasicrystal;a complex
structure with long-range order but no per-
iodicity, mostly observed in atomic alloys;
was discovered in computer simulations of
regular tetrahedra.7 Beyond simple crystals
and liquid-crystalline phases, experimental
realizations of complex colloidal crystals,
such as those isostructural to ABn atomic
crystals, have required two-component mix-
tures or attractive interactions,8�10 regardless
of building block shape. Finding new and
alternativeways toassemblenovel superstruc-
tures is an important prerequisite for future
applications of nanoparticles and colloids.
Here we investigate the influence of

shape on particle self-assembly and show
that small changes in shape of hard polyhe-
dra can suffice to produce a range of colloi-
dal crystal structures whose rich complexity
rivals that of atomic analogues, without the
need for mixtures or attractive interactions.
To demonstrate this, we study via computer

simulation assemblies and packings of hard
tetrahedra as their corners are increasingly
and symmetrically truncateduntil theparticles
become octahedra. In addition to body-
centered cubic and quasicrystalline struc-
tures, we report a space-filling polyhe-
dron forming β-tin, a densest packing
for the Archimedean truncated tetrahedron
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ABSTRACT

Polyhedra and their arrangements have intrigued humankind since the ancient Greeks and are today

importantmotifs in condensedmatter, with application tomany classes of liquids and solids. Yet, little

is known about the thermodynamically stable phases of polyhedrally shaped building blocks, such as

faceted nanoparticles and colloids. Although hard particles are known to organize due to entropy

alone, and some unusual phases are reported in the literature, the role of entropic forces in connection

with polyhedral shape is not well understood. Here, we study thermodynamic self-assembly of a

family of truncated tetrahedra and report several atomic crystal isostructures, including diamond,

β-tin, and high-pressure lithium, as the polyhedron shape varies from tetrahedral to octahedral. We

compare our findings with the densest packings of the truncated tetrahedron family obtained by

numerical compression and report a new space-filling polyhedron, which has been overlooked in

previous searches. Interestingly, the self-assembled structures differ from the densest packings. We

show that the self-assembled crystal structures can be understood as a tendency for polyhedra to

maximize face-to-face alignment, which can be generalized as directional entropic forces.

KEYWORDS: self-assembly . polyhedra packing . directional entropy .
space-filling . nanoparticles . computer simulation
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into R-arsenic, and the self-assembly of crystals iso-
structural to diamond and high-pressure lithium. We
show that in all cases the assembled structures favor
face-to-face alignment, and building on earlier con-
cepts of entropy-driven phase transitions,4,5 we intro-
duce the notion of directional entropic forces for hard
particles in analogy with controlled entropic forces in
systems of colloids and with directional enthalpic
forces in molecular and patchy particle systems. This
notion explains the observed crystal superlattices in a
natural way.
Our choice of building blocks is motivated by recent

advances in the synthesis and assembly of faceted
and monodisperse nanocrystals,11�17 and especially
tetrahedra.18,19 The observation that the structure of
many atomic crystals is dominated by polyhedral
building blocks20 suggests the possibility to reproduce
atomic crystal isostructures with colloidal polyhedra.
However, the phase behavior of polyhedra is often
unknown even for the highly symmetric Platonic and
Archimedean solids. Exceptions are mesophases21 and
phases in the limit of high pressure, which are identical
tomaximally dense packings and have been studied as
a mathematical optimization problem.22�26 To date,
no large-scale assembly simulations of complex crystal
structures with thousands of polyhedra have been
reported in the literature.
We use Monte Carlo computer simulation as in ref 7.

To identify a crystal structure, each polyhedron is
replaced by an atom positioned at its centroid. We
consider this replacement when we say that an ar-
rangement of polyhedra is “isostructural” to an atomic
crystal. The amount of truncation applied to a tetra-
hedron is specified by the truncation parameter t. This
parameter increases linearly with the distance of a
truncation plane from the nearest of the four vertices
in the original regular tetrahedron. A truncated tetra-
hedron has four equilateral triangles with edge length
σ(t/2) and four hexagons with the two edge lengths
σ(1 � t) and σ(t/2). Special cases depicted in Figure 1a
are the regular tetrahedron, with t = 0, the (as we will
see) space-filling truncated tetrahedron (STT), with t =
1/2, the Archimedean truncated tetrahedron (ATT),
with t = 2/3, and the regular octahedron, with t = 1.

RESULTS AND DISCUSSION

Densest Packings. We first investigate the densest
packings as a function of truncation. The findings are
later compared to the self-assembled structures. Re-
sults for the maximum packing density φmax are in-
cluded in Figures 1b and 2a. We find that φmax(t) is
continuous but shows sharp kinks.26 The observation
that all truncated tetrahedra pack with densities of at
least φmax = 82% indicates that these shapes are
generally efficient packers. They pack much better
than spheres, which have a maximum packing density

of only 74%. The number of particles per primitive unit
cell jumps from n = 4 for weakly truncated tetrahedra
(t< 0.27) to n= 2 for intermediate cases (0.27 < t < 0.93)
and finally to n = 1 for strongly truncated tetrahedra
resembling octahedra (t > 0.93). This decrease in n is
expected because shapes tend to pack into simpler
configurations with fewer particles per unit cell if they
are more centrally symmetric.24 We observe that
neighboring particles always pack face-to-face with
at least partial registry. For n = 2, the orientations of
the two truncated tetrahedra are related by inversion.
For n = 4, the particles form two dimers, which are
again related by inversion.

A further classification is possible by studying the
geometry of the primitive unit cell with varying t. We
observe that the unit cell of the densest packing shears
smoothly with t when contact points between neigh-
bors can be maintained and slide along the particle
surfaces. A kink in φmax(t) appears if there is a denser
packing with a different neighbor configuration or if a
contact point hits an edge of a polyhedron as t

changes, in which case deformations require the unit
cell to shear in another direction. The lattice parameters of
thedensestpackingsare shown inFigure2b. Thevariation
of the lattice parameters with truncation exhibits several
transitions. Symmetric packings (monoclinic, tetrago-
nal, orthorhombic) occur for intermediate truncations.
Shapes close to the octahedron favor triclinic lattices.
As reported previously, perfect tetrahedra arrange as
dimers and pack most densely in a triclinic double

Figure 1. Dense packings and self-assembled truncated
tetrahedra into atomic crystal isostructures. (a) Family of
truncated tetrahedra is parametrized by the truncation
parameter t and ranges from the regular tetrahedron to
the regular octahedron. (b) Phase diagram of truncated
tetrahedra. Upper data sets indicate maximum packing
densities φmax. Numerals and corresponding colors indicate
the number of particles in the primitive unit cell. Labels
indicate β-tin and R-arsenic structures for the space-filling
and Archimedean truncated tetrahedra, respectively. Lower
data sets correspond to the lowest density, φc, at which
crystallization from the fluid is observed. Labels indicate the
dodecagonal quasicrystal, diamond, β-tin, high-pressure
lithium, and body-centered cubic structures.
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dimer packing,25,26 and octahedra pack most densely
in a rhombohedral Bravais lattice.22

New packings appear for t = 1/2 and t = 2/3, both
local maxima of φmax(t) in Figure 1b. The STT at t = 1/2
(Figure 2d) has φmax(t) = 1 and is therefore space-filling.
The centroids of the STT form the β-tin structure
(Supporting Information, Figure S1). The exact analy-
tical positions and orientations of the STT in this
structure are given in Table S1. It appears that the
STT tiling has been missed in previous searches,27 and
thus the STT is a previously unrecognized space-filling
polyhedron. Given the simplicity and high symmetry of
the STT and the sparsity of space-filling polyhedra, in
general, this discovery is unexpected.

The importance of the packing at t = 2/3 lies in the
regularity of the ATT. As an Archimedean solid, the ATT
has four regular hexagonal faces and four regular
triangular faces. On the basis of the findings in our
simulations, we analytically construct an ideal tiling of
ATT with packing density φmax = 207/208 (Figure 2e).
A similar packing density has also recently been
reported28 in parallel to this work. Other previous
studies have reported packings with densities φmax =
23/2424 and φmax = 0.988 etc.29 for the ATT. Although
the number of the densest ATT packing is surprisingly
close to 1, the ATT does not fill space because of the
appearance of small tetrahedral voids with an edge
length of σ/9. The centroids of the ATT form the
R-arsenic structure (Figure S2). The exact analytic con-
struction of the ATT packing is given in Table S2.

Self-Assembly of Crystal Structures. Next, we study the
self-assembly of hard truncated tetrahedra into crystals
starting from the disordered fluid phase. We choose a
truncation t and an initial packing density φ for a
constant volume Monte Carlo simulation and simulate
for 20�100 million Monte Carlo cycles. The lowest
packing density where we observe crystallization, φc,
is shown as the lower curve in Figure 1b. Crystallization
does not occur on the time scale of our simulations in
the region 0.8 < t < 0.85, indicating that either the
nucleation rate is extremely low or crystals are not
possible. For all other ranges of t between 0 and 1, we
repeatedly observe nucleation and rapid growth of
single-crystal phases spanning the whole simulation
box. We find that φc varies between 0.5 and 0.63
depending on shape and increases toward the bound-
aries of the stability regimes.

Five crystal structures spontaneously self-assemble
in our simulations as t is increased from zero. Over a
considerable range of truncation (0 e t e 0.45),
the particles order into a dodecagonal quasicrystal
(Figure 3a). This shows that the quasicrystal reported
previously with regular tetrahedra7 is robust and forms
even with truncated particles. However, as t increases
toward 0.5, crystallization slows and the quality of the
quasicrystal deteriorates. For 0.5 e t e 0.8, the dia-
mond structure assembles from the fluid. Nucleation is
fast, and crystal growth is robust enough to obtain
defect-free single crystals routinely with thousands of
particles (Figure 3b). Toward the higher end of this

Figure 2. Densest packings of truncated tetrahedra. (a) Blow-up of maximum packing densities from Figure 1b and
comparison with (b) lattice parameters vs truncation t. Colors of the data sets in (a) (red, blue, green) indicate the number
of particles in the primitive unit cell (four, two, one) for indicated structures. Colors of the data sets in (b) (red, blue, black)
indicate the absolute value of the three lattice parameters that generate the unit cell. In both (a) and (b), vertical background
shading indicates unit cells with different numbers of particles or different symmetries (vertical regions inside blue shading).
Discontinuities of the derivative of φmax occur at t = 0.50, 0.64, 2/3, 0.78, 0.83, and 0.94 and indicate changes in symmetry of
the densest packing structure. These kinks are reflected by similar discontinuities in the lattice parameter curve (or its
derivative) in (b). (c) For small truncations, the particles form dimers, which occur in two orientations similar to the densest
tetrahedronpacking. (d) STTfills space in theβ-tin structure. Two triangular faces fit along a long edge of the hexagonal faces.
(e) ATT packs with a density of 207/208 in a lattice isostructural to R-arsenic. The particles are perfectly face-to-face within
dimers, but notwith other neighbors. (f) Regular octahedra pack into a rhombohedral Bravais lattice, which is slightly sheared
compared to the bcc lattice.
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range of t, the cubic unit cell of diamond compresses
along one direction to form the tetragonal crystal
structure β-tin, identical to the densest packing of
the STT, but for different values of t.

Strongly truncated tetrahedra with 0.85 e t < 0.95
assemble into a cubic phase isostructural to high-
pressure lithium.30 The lattice is bipartite and com-
posed of two identical but intertwined sublattices, as
indicated by the coloring in Figure 3c. Although the
structure is complex with 16 particles in the unit cell,
perfect single crystals assemble easily from the fluid
(Figure S5). To our knowledge, crystals with such a high
number of particles in the unit cell have so far not been
reported for hard particles in the literature. For nearly

perfect octahedra (0.95 e t e 1), the body-centered
cubic (bcc) lattice is observed at lowdensity (Figure 3d).
This is expected because nano-octahedra with short-
range repulsive interactions self-assemble into bcc.31 In
contrast to the other low-density phases reported here,
the particles in the bcc lattice are free to rotate, which
means the bcc phase is a rotator or plastic crystal.

It is interesting to note that the densest packing is
different from the stable phase nucleating from the
fluid (Figure 1b). We do not find even one value for the
truncation parameter t, where the densest packings
and assembled crystals are identical. Even in the case
of perfect octahedra, the bcc crystal at low density
undergoes a first order phase transformation into a

Figure 3. Structures of truncated tetrahedra self-assembled in simulation at intermediate density. In each subfigure, a
snapshot of the full simulation box, temporally averaged to remove thermal disorder together with a characteristic motif
(bottom left), ball-and-stick model (bottom center), and the system's diffraction pattern (bottom right) are shown. With
increasing truncation, 2624 truncated tetrahedra assemble into (a) dodecagonal quasicrystal (t = 0.2), (b) diamond lattice
(t = 2/3), (c) bipartite lattice isostructural to high-pressure lithium (t = 0.95), and (d) bcc lattice of regular octahedra (t = 1). Not
shown: β-tin (t = 0.8), which is the same structure as that obtained for the densest STT structure at a different value of t.
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rhombohedral lattice by a slight shear along the [111]
direction (Figure S6). This indicates that the self-assembly
of hard truncated tetrahedra, and possibly of a large class
of polyhedra, cannot be viewed as a packing problem
alone. We further observe that the self-assembled
structures typicallyhavehigher crystallographic symmetry
(tetragonal, cubic, dodecahedral) compared to their
corresponding densest packings (triclinic, monoclinic,
tetragonal, orthorhombic) and have more face-to-face
orientations between nearest neighbors.

Directional Entropy. Indeed, face-to-face arrange-
ments appear to be a key motif in the self-assembly
of hard polyhedra. The crystals we observe can be
grouped into three classes with varying symmetries
and varying importance of face-to-face orientations:
(i) bcc-like structures, (ii) a tetrahedral network, and
(iii) carbon-related structures. Thebcc-like structures (bcc,
high-pressure lithium) result for particles with shapes
resembling the octahedron. The high-pressure lithium
phase relates closely to bcc by shifting atom columns.30

Within each sublattice of the bipartite lithium structure,
there are hexagon�hexagon face-to-face contacts only
(Figure 3c), while triangle�hexagon and triangle�
triangle orientations occur only between sublattices
(Figure S4). It is interesting that the high-pressure
lithium phase has recently also been observed with
attractive octahedral nanocrystals,32 which demon-
strates that in this example changing the shape of the
octahedron to a truncated tetrahedron has a similar
effect on the preferred crystal structure as turning on an
attractive face-to-face interaction. In bcc, the higher
equivalence of triangle and hexagon faces facilitates
two types of face-to-face orientations (Figure S7), ex-
plaining the transition from high-pressure lithium to
bcc for increasing values of the truncation parameter.

At the other extreme, the dodecagonal quasicrystal
canbeunderstoodas a tetrahedral networkof pentagonal
dipyramids.7 It occurs for particleswith shapemost closely
resembling the tetrahedron and is dominated by triangu-
lar face-to-face contacts that produce dimers arranged in
stacks of pentagonal dipyramids and 12-member rings.
Shapes intermediate between the tetrahedron and the
octahedron form a range of carbon-like structures, includ-
ing diamond,β-tin, andR-arsenic, with strong face-to-face
alignment of hexagonal facets. In contrast to the tetrahe-
dral network, neighboring faces are now rotated by 180�

relative to each other, which permits a higher contact
area for these truncations (Figure S3).

Thermodynamic systems minimize free energy at
equilibrium; when interactions are absent, entropy is
maximized at fixed volume. The favoring of face-to-
face orientations provides insight into how entropy is
maximized by the structures we observe. Consider the
well-known, isotropic-to-nematic transition in hard
rods.4 At sufficiently high packing densities, parallel
alignment increases the translational entropy of the
system at the expense of rotational entropy, produc-
ing the nematic phase.5 Simple analogy suggests that
polyhedra should likewise prefer to align with faces
parallel, in agreement with our observations. Com-
petition among different types of faces, as in the
present family of polyhedra, can lead to complexity of
structure.

CONCLUSION

Our simulation results constitute the first report of
the self-assembly of complex crystal structures from
the fluid phase with hard particles. The findings can
be explained by a preference for face-to-face align-
ment in systems of hard, faceted objects, which
suggests considering entropic forces as directional
in such systems since they increase with contact
area between neighbors3 and thus act strongest
perpendicular to the faces. In this sense, directional
entropic forces in hard particle systems act like
attractive interactions in systems of patchy particles
or like depletion interactions in mixtures of large
and small particles, which can be controlled by
shape17,33 and roughness.34 Our results suggest that
particle shape can produce entropic “patchiness”
just as patterning can produce interaction patchiness35

and that bond geometries in patchy particle systems
can, in principle, be imitated by shape, providing
additional strategies for building block design. A recent
example of directional entropic forces in colloids are
dimpled “pacman” particles,33 in which the dimple
shape and entropic depletion forces control particle
binding. The use of depletants with polyhedral par-
ticles should provide an even greater variety of
ordered structures, obtained then by entropic
patchiness arising both from facet alignment and
anisotropic depletion.

METHODS

Simulations. Our numerical tools are isochoric (constant
volume) and isobaric (constant pressure) Monte Carlo simula-
tions similar to the ones employed in ref 6. Update steps
consist of arbitrary translation, rotation, and box shearing moves.
Step sizes are chosen to achieve an average acceptance prob-
ability of 30%. While the simulation box is, in principle, allowed to
have arbitrary dimensions and to undergo shear in any of three
orthogonal directions, we use a lattice reduction technique after

each boxmove to keep the box as compact as possible and avoid
strong shearing. Candidates for densest packings are obtained by
compressing systems with 1, 2, or 4 particles in the box applying
periodic boundary conditions. Self-assembly simulations employ
much larger boxes with at least 1000 particles and up to 8000
particles at packing densities 0.48 e φ e 0.66. All findings are
verified by running independent simulations with different initi-
alizations and in different box sizes.

Structure Characterization. For the determination of radial dis-
tribution functions and the calculation of diffraction patterns
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via fast Fourier transform, point scatterers are placed in the
centroids of the polyhedra. Bond order diagrams are obtained
by projecting the vectors connecting the centroids of nearest
neighbor polyhedra on the surface of a sphere. All three func-
tions are used to characterize and identify the self-assembled
structures and densest packings.

Geometric Representation. The position and orientation of a
truncated tetrahedron are given by a translation vector (x, y, z)
and a quaternion (a, b, c, d). The relation between the quater-
nion and the rotation matrix is

R ¼
a2 þ b2 � c2 � d2 2(bc � ad) 2(bdþ ac)
2(bcþ ad) a2 � b2 þ c2 � d2 2(cd � ab)
2(bd � ac) 2(cdþ ab) a2 � b2 � c2 þ d2
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